

UNIVERSIDADE FEDERAL DE UBERLÂNDIA FACULDADE DE MATEMÁTICA CURSO DE BACHARELADO EM ESTATÍSTICA

FICHA DE COMPONENTE CURRICULAR

CÓDIGO:	COMPONENTE CURRICULAR:				
GES022	INFERÊNCIA ESTATÍSTICA 2				
UNIDADE AC	SIGLA:				
FACULDA	FAMAT				
CH TOTAL TEÓRICA: 60	CH TOTAL PRÁTICA:	CH TOTAL: 60			

OBJETIVOS

Dar continuidade ao ensino da Estatística Clássica, apresentando de maneira formal, os conceitos básicos de Testes de Hipóteses. Fornecer os fundamentos teóricos de testes usuais e usar esses fundamentos para formular testes mais gerais. Proporcionar aos alunos o conhecimento teórico-prático dos principais métodos estatísticos não-paramétricos.

EMENTA

Testes de hipóteses paramétricos: Definições básicas. O conceito de p-valor. Formulação de Neyman — Pearson. Teste da razão de verossimilhanças. Testes uniformemente mais poderosos. Testes usuais sobre os parâmetros da distribuição normal. Teste da razão de verossimilhanças generalizado. Relação entre intervalos de confiança e testes de hipóteses. Testes Não Paramétricos: conceitos básicos, problema de uma amostra, testes de posição, comparação pareada, problema de duas amostras, teste de posição e dispersão de duas a amostras independentes, comparação de mais de duas amostras, testes de posição de mais de duas amostras independentes, blocos aleatorizados completos, teste de posição de mais de duas amostras não independentes.

PROGRAMA

I - Testes de Hipóteses Paramétricos

- 1. Testes de hipóteses estatísticas
 - 1.1. O problema do teste de hipóteses;
 - 1.2. Hipótese nula e hipótese alternativa;
 - 1.3. Erros do tipo I e do tipo II;
 - 1.4. Região crítica e região de aceitação;
 - 1.5. Nível de significância e P-valor;
 - 1.6. Função Poder.
 - 1.7. Introdução à teoria das decisões Os princípios MinMax e de Bayes, estimadores de Bayes com perda quadrática.

- 1.8. Lema de Neyman-Pearson Teste de uma hipótese nula simples contra hipótese alternativa simples;
- 1.9. Teste de uma hipótese simples contra uma alternativa composta (testes uniformemente mais poderosos)
- 1.10. Testes da razão de verossimilhança
- 2. Testes relativos aos parâmetros de uma distribuição Normal
 - 2.1. Testes relativos à comparação de duas distribuições Normais
- 3. Testes relativos à parâmetros de algumas distribuições usuais
 - 3.1. Teste para uma proporção (Distribuição Binomial)
 - 3.2. Testes para a igualdade de duas proporções
 - 3.3. Testes para a média da distribuição de Poisson
- 4. Teste da razão de verossimilhanças generalizado
- 5. Relação entre testes e intervalos de confiança.

II - Métodos Não Paramétricos

- 1. Introdução
 - 1.1. Conceitos básicos: Função Distribuição, distribuição empírica, quantis populacionais amostrais
 - 1.2 Escalas de mensuração
 - 1.2. Estatística não paramétrica versus estatística paramétrica
 - 1.3. Vantagens e desvantagens
- 2. O caso de uma amostra
 - 2.1. Teste binomial
 - 2.2. Testes qui-quadrados
 - 2.3. Testes de Kolmogov-Smirnov
 - 2.4. Testes de interações
 - 2.5. Testes para normalidade
- 3. O caso de duas amostras relacionadas
 - 3.1. Testes de McNemar
 - 3.2. Testes dos Sinais
 - 3.3. Testes de Wilcoxon
 - 3.4. Comparação do teste "t" de Student com o teste de Wilcoxon
- 4. O caso de duas amostras independentes
 - 4.1. Tabelas de contingências e o teste qui-quadrado
 - 4.2. Testes da mediana
 - 4.3. Testes U de Mann-Whitney
 - 4.4. Testes de Kolmogorov-Smirnov
- 5. O caso de K amostras relacionadas
 - 5.1. Testes de Friedman
 - 5.2. Testes Q de Cochran
- 6 O caso de *K* amostras independentes
 - 6.1. Teste qui-quadrado
 - 6.2. Teste da mediana
 - 6.3. Teste de Kruskal-Wallis
- 7. Medidas de correlação
 - 7.1. O coeficiente de contingência C de Pearson.
 - 7.2. O coeficiente de correlação de postos de Kendall
 - 7.3. O coeficiente de correlação de postos de Spearman
- 8. Métodos de Reamostragem Boostrap e Jackknife

BIBLIOGRAFIA BÁSICA

BOLFARINE, H., SANDOVAL, M.C. Introdução à Inferência Estatística. Coleção Matemática Aplicada – Sociedade Brasileira de Matemática, 2001.

CASELLA, G.; BERGER, R. L. Inferência estatística. São Paulo, Cengage Learning, 2010.

SIEGEL, S. Estatística não-paramétrica para ciências do comportamento. São Paulo: McGraw-Hill, 1975.

BIBLIOGRAFIA COMPLEMENTAR

BIOMETRIKA. Oxford: Oxford University Press. 1901 –. ISSN 1464-3510.

CONOVER, W. J. Practical nonparametric statistics. 3rd., Ed., New York: J. Wiley, 1999. GIBBONS, J. D. Nonparametric statistics: an introduction. Newbury Park, Sage, 1993.

JOURNAL OF STATISTICAL PLANNING AND INFERENCE. Amsterdam: Elsevier. 1980-. ISSN 0378-3758.

JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B (STATISTICAL METHODOLOGY). Oxford: Wiley-Blackwell.1838-. ISSN 1369-7412.

LEHMANN, E. L.; D'ABRERA, H. J. M. Nonparametrics: statistical methods based on ranks. New York, Springer, 2006.

LEHMANN, E. L. Elements of large-sample theory. New York, Springer, 1999.

MOOD, A.M., GRAYBILL, F.A.; BOES, D.C. Introduction to the theory of statistics. 3^a ed. Editora McGraw-Hill, 1974.

SPRENT, P.; SMEETON, N. C. Applied nonparametric statistical methods. 4th. Ed., Boca Raton, Chapman & Hall/CRC, 2007.

WASSERMAN, L. All of nonparametric statistics. New York, Springer, 2006.

	APROVAÇÃO			
	//		//	
Coordenador o	do Curso de Bacharelado em Estatística		Diretor da Faculdade de	Matemática