UNIVERSIDADE FEDERAL DE UBERLÂNDIA 3^a Lista de Cálculo Numérico

 $z = \frac{1}{1 + e^{(ax+b)}}$:

X	0	0,20	0,50	0,60	0,80	1,10
Z	0,06	0,12	0,30	0,60	0,73	0,74

- **2**°) Aproximar $f(x) = \sqrt[3]{x}$ no intervalo [0, 1] por um polinômio de terceiro grau, usando os valores de x com incremento de 0,1.
- 3^{a}) O número de bactérias, por unidade de volume, existente em uma amostra após x horas é apresentado na tabela:

x (no. de horas)	0	1	2	3	4	5	6
y (no. de bactérias por volume)	32	47	65	92	132	190	275

- a) Verifique se o tipo de curva exponencial ajusta-se aos resultados experimentais (use o diagrama de dispersão)
- **b)** Ajuste os dados às curvas $y=ab^x$ e $y=ax^b$, compare os valores obtidos por meio destas equações com os dados experimentais;
- c) Avalie da melhor forma o número de bactérias por volume após 7 horas.
- 4) A produção de aço (em milhões de toneladas) de certo país está abaixo indicada:

Anos	1960	1961	1962	1963	1964	1965	1966	1967	1968	1969	1970
produção	66,6	84,9	88,6	78,0	96,8	105,2	93,2	111,6	88,3	117,0	115,2

- a) Utilizando o método dos quadrados mínimos, determinar a equação de uma reta que se ajuste aos dados;
- **b)** Avaliar a produção de aço durante o ano de 1971.
- 5°) Aproxime a função $f(x) = x^3 + x$ no intervalo [0, 1]:
- a) por uma reta;
- **b**) por uma função do tipo $\varphi(x) = \alpha x^2$.

Nos dois casos, utilize o Método dos Quadrados Mínimos.

6^a) Dada a tabela

х	0.00	0.10	0.50	1.00	1.50
f(x)	2.00	2.22	3.72	8.39	21.08

suponha que o ajuste dos pontos seja feito pelo Método dos Quadrados Mínimos (MQM) com uma função do tipo $Q(x) = Q(x; a_1, a_2) = a_1g_1(x) + a_2g_2(x)$. Faça o diagrama de dispersão e indique qual das funções abaixo fornecerá o melhor ajuste:

a)
$$g_1(x) = 1$$
 e $g_2(x) = e^x$; b) $g_1(x) = 1$ e $g_2(x) = 1/x$; c) $g_1(x) = 1$ e $g_2(x) = sen(x)$

- 7^{a}) Uma função da forma $\varphi(x) = y^{*}/(b.e^{(-ax)} + 1)$ (y^{*} : constante dada; a e b: parâmetros a serem determinados) é utilizada para ajustar os pontos (x_{i} , y_{i}) de uma tabela; $\varphi(x_{i}) \approx y_{i}$. Este é um modelo não linear de ajuste de curva. Para simplificar o ajuste, será utilizado o método dos quadrados mínimos (MQM) em um problema linearizado, ou seja, será preciso modificar os pontos da tabela, levando-se em consideração os pontos $z_{i} = T(y_{i})$.
- i) Obtenha a linearização, T, adequada para este problema.
- ii) O sistema linear resultante terá quantas equações? Justifique.
- **8**^a) Considere os pontos a seguir.

Ī	Х	-1.0	0.0	1.0	2.0
ĺ	f(x)	1.7321	1.0	1.7321	3.0

Estes pontos serão ajustados por uma função do tipo $Q(x) = Q(x; a,b) = a (1 + bx^2)^{1/2}$. Observe que Q(x) não é linear nos parâmetros a e b. Para que o MQM linear seja utilizado, deve-se linearizar o problema.

- i) Justifique porquê a transformação $T(y) = y^2$ é adequada para linearizar o problema. Quais serão os novos parâmetros?
- ii) Calcule os termos independentes associados ao problema linearizado.
- iii) Estime o valor de f(1.5) sabendo que $p_1 = 1.000113$ e $p_2 = 1.99998$ são os novos parâmetros associados às funções $g_1(x) = 1$ e $g_2(x) = x^2$, respectivamente.
- 9ª) Uma função da forma $\varphi(x) = 20 + [1/(a + bx)]$ é utilizada para ajustar os pontos de uma tabela, $\varphi(x_i) \approx y_i$. Este é um caso não linear de ajuste de curva. Para utilizarmos o método dos quadrados mínimos precisamos modificar a tabela que deve levar em consideração os pontos $z_i = F(y_i)$.
- i) Obtenha a linearização, F, adequada para este problema.
- ii) O sistema linear resultante terá quantas equações?